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Abstract

In this article, we propose a rapid method to compute the steady states, including bifurcation diagrams, of resonant
tunneling heterostructures in the far from equilibrium regime. Those calculations are made on a simplified model which
takes into account the characteristic quantities which arise from an accurate asymptotic analysis of the nonlinear Schrö-
dinger–Poisson system. After a summary of the existing theoretical results, the asymptotic model is explicitly adapted to
physically realistic situations and numerical results are shown in various cases.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past 20 years there has been a serious effort to develop efficient numerical methods in order to com-
pute the steady states of out of equilibrium quantum resonant heterostructures. The final aim is to be able to
predict from numerical simulations the I–V characteristic curve for devices which involve an unusual coupling
between spectral quantities associated with the quantum mechanics and nonlinear effects due to the electrostatic
mean field. Two types of models were considered: purely quantum ones based on Schrödinger–Poisson systems
or Wigner–Poisson systems (see for example [1–6,30,34,35]); and quantum hydrodynamic or drift-diffusion
models (see for example [9–11,13,36]). The second ones which assume local thermal equilibrium or local entropy
maximizing states are well suited for situations where quantum effects, averaged by the statistics over a large
number of particles, only bring small corrections to classical mechanics. The first ones on which we will focus
stick to the quantum nature of the phenomena and have to be chosen in order to describe accurately the quan-
tum transport. Actually, both of those models were able to recover the negative differential resistance typical of
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resonant tunneling diodes [9,34,35]. This phenomenon, which is essentially linear, relies on the basic topological
argument that, when the bias is increased, the resonant energy eventually crosses the ground energy of the
incoming beam. It is therefore very robust, remains in all the considered models and survives to any numerical
discretization. The situation became more complicated after the work by Jona-Lasinio et al. [21] and Presilla
and Sjöstrand [37], where they showed that the Schrödinger–Poisson system could lead to hysteresis phenomena
in agreement with physical observations. Other works mentioned the possibility of having much more complex
bifurcation diagrams [22]. In order to catch all these phenomena, an accurate treatment of the tunnel effect
through the barrier has to be taken into account and one has to start with quantum models like Schröding-
er–Poisson or Wigner–Poisson systems rather than hydrodynamical models. A first difficulty which has to be
taken into account is related with the out of equilibrium regime. At the quantum level it can be done in the Lan-
dauer–Büttiker [8,25] approach directly on the Schrödinger–Poisson system or via the Wigner–Poisson system
[12,14,24]. This has motivated several theoretical studies concerned with the numerical treatment of artificial
boundary conditions [1,2], with the well-posedness of the nonlinear problem [5,6,30] and with the derivation
of asymptotic models [21,31–33,37]. The second difficulty comes from the complexity of a rough numerical
treatment due to the presence of resonant states. The system requires a spatial and a spectral discretization.
But resonances lead to very stiff spectral quantities (with slopes like eC/h, h� 1) which require a specific treat-
ment. It was done with WKB techniques in [21] and implemented in numerical methods by Ben Abdallah and
Pinaud in [7,34,35]. However, the numerical complexity remains still large enough in order to motivate the der-
ivation of simplified model which would permit a rapid insight of possible bifurcation diagrams.

In [21,37], it is suggested that hysteresis phenomena occur only when the drain barrier is thicker or higher
than the source one. Therefore, the geometry of the barriers is an important parameter and it is actually an
unknown affected by the nonlinearity even when this latter is not very large. The analysis carried out by the
third author on the specific asymptotic model of quantum wells in a semiclassical island was developed in
order to elucidate the role of the geometry of the barriers in these nonlinear phenomena. It has been done
in a general enough framework in order to cover several heterostructure problems. In doing so, he provided
the right quantities which govern the nonlinear phenomenon with an accurate treatment of the tunnel effect.
Here we present an adaptation of the theoretical asymptotic analysis which leads to a very rapid determination
of bifurcation diagrams.

The outline of the article is the following:

Section 2. Model: In this section, we present the nonlinear Schrödinger–Poisson problem with the Landa-
uer–Büttiker approach which involves the stationary scattering states.
Section 3. Scaling: We introduce the natural reference magnitudes of this problem. Three numerical dimen-
sionless parameters h, b and c arise from the scaling of the equations.
Section 4. Theoretical results: The results obtained in [32,33] are summarized in the specific regime h! 0.
Section 5. Validity of the asymptotic model: On complete numerical computations for the original model, we
check that the theoretical asymptotic model in the limit h! 0 is relevant.
Section 6. Implementation of the asymptotic model: A distinction is made here between the quantities which
come from the asymptotic model and the ones which are computed exactly.
Section 7. Computation of the Agmon distances: This short section provides exact analytical expressions for
quantities which are involved in the final algorithm.
Section 8. Penalization method: Several cases have to be considered. They are separated by multidimen-
sional non-convex constraints. Their implementation is done via a penalization method which is specified
in this section.
Section 9. Numerical results: Several computations were done for AlGaAs–GaAs or Si–SiO structures and
were compared with existing numerical results.
Section 10. Conclusion.

2. The model

In resonant tunneling diodes and similar heterostructures, electronic transport occurs transversally to the
heterojunctions. It is modelled with a one-dimensional system in the direction x = x3 which involves mean or
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integrated quantities along the two-dimensional parallel direction (x1,x2). The mass m that we use is the effec-
tive electronic mass m = m3 in the direction x = x3 and �h denotes the Planck constant.

The quantum Hamiltonian for a single electron has the form
� �h2

2m
d

dx2
þVðxÞ; V ¼ BþV0 þ V NL; ð1Þ
with a nonlinear potential VNL which is non-negative and takes into account the mean repulsive electrostatic
field inside the device. It is assumed that these nonlinear effects are negligible (quasineutral approximation)
outside the device and we will come back to this point in our conclusion (Section 10). The potential V is
the total potential in the device. The first potential term B simply includes the bias voltage B applied to
the device. It is piecewise affine
BðxÞ ¼ �B
x� a
b� a

1½a;b�ðxÞ þ 1½b;þ1ÞðxÞ
h i

:

The second term describes the barriers and the wells,
V0ðxÞ ¼ V 01½a;b�ðxÞ þ
XN

j¼1

W jðxÞ;
with the constant V0 > 0 and the compactly supported potentials W j 2 L1ðRÞ; �V 0 6 W j 6 0, fixed. The
external potential BþV0 is represented in Fig. 1.

The shape of the incoming beam of electrons is contained in the prescribed function f. For the initial
presentation, we focus on the case of a beam coming from the left-hand side and described by a function
f supported in k P 0. The more physically relevant case where the injection comes from both sides will
be discussed further in Section 4.4. We assume that the injection profile is governed by the thermodynamic
equilibrium
f ðkÞ ¼ gðk2Þ1RþðkÞ with gðk2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m1m2
p

kBT

p�h2
ln 1þ exp

EF � �h2k2

2m

kBT

 ! !
; ð2Þ
where kB, T and k denote, respectively, the Boltzmann constant, the temperature and the wave vector, g rep-
resents the Fermi–Dirac distribution function after integration along the two directions (x1,x2) with x = x3,
and EF is the Fermi level given by
EF ¼
�h2

2
ð3p2nDÞ2=3ðm1m2m3Þ�1=3

:

Here the introduction of a non-isotropic effective electronic mass (m1,m2,m3) permits to apply our model and
numerical simulation to heterostructures like Si–SiO. The symbol nD denotes the donor density outside the
device (x 62 [a,b]).

The out-of-equilibrium regime for the Schrödinger–Poisson system requires the introduction of the general-
ized eigenfunctions in order to describe the steady state density. For a prescribed incoming flow, one uses the
incoming generalized eigenfunctions w�(k,x) defined for k > 0 by
V 0

B

a b

Fig. 1. Representation of the external potential in the device.
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� �h2

2m
d2

dx2
w�ðk; xÞ þVw�ðk; xÞ ¼

�h2k2

2m
w�ðk; xÞ for x 2 R; ð3Þ

w�ðk; xÞ ¼ eikx þ RðkÞe�i kx for x 6 a;

w�ðk; xÞ ¼ T ðkÞei
ffiffiffiffiffiffiffiffi
k2þB
p

x for x P b;
where R(k) and T(k) are, respectively, the reflexion and transmission coefficients. The electronic density n is
then defined by
8/ 2 C0
cðða; bÞÞ;Z b

a
nðxÞ/ðxÞ dx ¼

Z þ1

0

gðk2Þ
Z b

a
jw�ðk; xÞj

2/ðxÞ dx
dk
2p
¼ Tr½f ðK�Þ/�;

ð4Þ
where K� is the asymptotic momentum observable (see Section 3.2 and [30]).
Finally, if � denotes the dielectric permittivity and e the elementary charge, the nonlinear potential VNL sat-

isfies the Poisson equation
� d2V NL

dx2
¼ e2

�
n;

V NLðaÞ ¼ V NLðbÞ ¼ 0:

ð5Þ
3. Scaling the equation

In order to make precisely the connection with the theoretical analysis and for a more flexible numerical
treatment (which can be adapted to treat different semiconductor device structures), the Schrödinger–Poisson
system is written here with dimensionless quantities and unknowns. The small parameter h is well identified
with this writing as the scaled Fermi length.

3.1. Schrödinger equation

The reference length and energy will be the total length of the device L = b � a and the Fermi level EF.
With the change of variables x ¼ x�a

L 2 ½0; 1�, we define the new functions
uðxÞ ¼ uðLxþ aÞ ¼ uðxÞ and VhðxÞ ¼ 1

EF

VðLxþ aÞ ¼ 1

EF

VðxÞ:
The equation
� �h2

2m
d2

dx2
uþVu ¼ �h2k2

2m
u

becomes
� �h2

2mL2EF

d2

dx2
uþVhu ¼ �h2k2

2mEF

u:
The new dimensionless wave vector is given by
k ¼ �hffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p k;
while the semiclassical (small) parameter h will be the scaled Fermi length
h ¼ �hffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p 1

L
¼ LF

L
:
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Therefore, Eq. (3) is rewritten as
�h2 d2

dx2
uþVh u ¼ k2u:
We write Vh in the form
VhðxÞ ¼ 1

EF

VðxÞ ¼ BðxÞ þVh
0ðxÞ þ V h

NLðxÞ;
where
BðxÞ ¼ 1

EF

BðxÞ ¼ �B½x1½0;1�ðxÞ þ 1½1;þ1ÞðxÞ�; with B ¼ B
EF

;

V h
NLðxÞ ¼

1

EF

V NLðxÞ;

Vh
0ðxÞ ¼ V 01½0;1�ðxÞ þ

XN

j¼1

W j
x� cj

h

� �
with W j

x� cj

h

� �
¼ W jðxÞ

EF

; V 0 ¼
V 0

EF

:

For h > 0, it is always possible to define W jðyÞ ¼ E�1
F W jðLðcj þ hyÞÞ. The writing W jðx�cj

h Þ suggests that the jth
well concentrates at x = cj when h > 0 is small. The theoretical analysis was carried out in this specific frame-
work by Patel in [32] in the limit h! 0. Actually, this scaling was motivated by the fact that the heterostruc-
tures present a finite number of resonant states in the relevant energy interval. The asymptotic of quantum
wells W jðx�cj

h Þ in a semiclassical island BðxÞ þ V h
NLðxÞ þ V 01½0;1�ðxÞ permits to keep this constraint even in

the limit h! 0. The points cj can be thought as averaged positions in the wells. They are not exactly the middle
points and their determination in practical situations with h > 0 will be described in Section 6.1.

After calling b ¼ EF

kBT ¼
T F

T the ratio between the Fermi temperature and the temperature, the Fermi–Dirac
function g is transformed into the dimensionless function:
gðk2Þ ¼ p�h2ffiffiffiffiffiffiffiffiffiffiffi
m1m2
p

EF

gðk2Þ ¼ b�1 lnð1þ expðbð1� k2ÞÞÞ:
3.2. Generalized eigenfunctions

With the condition min Wj P �V0, the Hamiltonian Hh ¼ �h2DþVh has only absolute continuous spec-
trum (see [32] and references therein). The injection profile in the one-dimensional case is a function of the
asymptotic momentum observable Kh

�, according to [6,8,14,25,30]. It is written in terms of the generalized
eigenfunctions as
f ðKh
�Þðx; x0Þ ¼

Z þ1

�1
f ðkÞwh

�ðk; xÞw
h
�ðk; x0Þ

dk
2ph

: ð6Þ
After the scaling, the generalized eigenfunctions for the Hamiltonian Hh satisfy:

k > 0
H hwh
�ðk; xÞ ¼ k2wh

�ðk; xÞ;
wh
�ðk; xÞ � eikx=h þ RðkÞe�ikx=h for x! �1; ð7Þ

wh
�ðk; xÞ � T ðkÞei

ffiffiffiffiffiffiffiffi
k2þB
p

x=h for x! þ1; ð8Þ

k < 0

H hwh
�ðk; xÞ ¼ ðk2 � BÞwh

�ðk; xÞ;
wh
�ðk; xÞ � eikx=h þ RðkÞe�ikx=h for x! þ1; ð9Þ

wh
�ðk; xÞ � T ðkÞe�iðk2�BÞ1=2x=h for x! �1: ð10Þ

The complex square root (z)1/2 is chosen above as ðqeihÞ1=2 ¼ ffiffiffi
q
p

eih=2 for q P 0 and h 2 [0,2p).
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An important remark in the analysis of [30,32] says that the functions of the energy are specific functions of
the momentum. Namely in terms of operator functional calculus, plugging f(k) = F(k2)1{k>0} + F(k2 � B)1{k<0}

into (6) leads to f ðKh
�Þ ¼ F ðH hÞ, when F is any given function of the energy. We refer to [30,32] for more details.

In the case of a beam coming from the left-hand side with a Fermi–Dirac statistics g, the function f is given
by f(k) = g(k2)1{k>0} so that
f ðKh
�Þðx; x0Þ ¼

Z þ1

0

gðk2Þwh
�ðk; xÞw

h
�ðk; x0Þ

dk
2ph

:

The rescaled electronic density is then given as the local trace of f ðKh
�Þ by
nðxÞ ¼
Z þ1

0

gðk2Þjwh
�ðk; xÞj

2 dk
2ph
¼ p�h2ffiffiffiffiffiffiffiffiffiffiffi

m1m2
p

EF

LnðxÞ;
after starting from the initial definition
nðxÞ ¼
Z þ1

0

gðk2Þ w�ðk; xÞ
��� ���2 dk

2p
:

3.3. Poisson equation

The nonlinear potential VNL solves
�EF

L2

d2V h
NLðxÞ

dx2
¼ � d2V NLðxÞ

dx2
¼ e2

�
nðxÞ ¼ e2

�

1

L

ffiffiffiffiffiffiffiffiffiffiffi
m1m2
p

EF

p�h2
nðxÞ:
Therefore, the rescaled nonlinear V h
NL satisfies the equation
� d2V h
NLðxÞ

dx2
¼ L

e2 ffiffiffiffiffiffiffiffiffiffiffi
m1m2
p

�p�h2
nðxÞ:
3.4. Scaled system

The previous normalizations are summarized in the rescaled system:
� h2 d2

dx2
wh
�ðk; xÞ þVhwh

�ðk; xÞ ¼ k2wh
�ðk; xÞ þ BC;

VhðxÞ ¼ BðxÞ þVh
0ðxÞ þ V h

NLðxÞ;

Vh
0ðxÞ ¼ V 01½0;1�ðxÞ �

XN

j¼1

W j
x� cj

h

� �
;

gðk2Þ ¼ b�1 lnð1þ expðbð1� k2ÞÞÞ;

nðxÞ ¼
Z þ1

0

gðk2Þjwh
�ðk; xÞj

2 dk
2ph

;

� d2V h
NL

dx2
¼ cn; with V h

NLð0Þ ¼ V h
NLð1Þ ¼ 0;

ð11Þ
where x ¼ x�a
L , k ¼ �hffiffiffiffiffiffiffiffi

2mEF

p k and ‘‘+BC’’ summarizes the boundary conditions (7)–(10). The scaling parameters
are defined as
h ¼ �hffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p 1

L
¼ LF

L
; b ¼ EF

kBT
and c ¼ 4L

aB

; ð12Þ
where the Bohr radius is defined as usual aB ¼ 4p�h2�ffiffiffiffiffiffiffiffi
m1m2
p

e2. Thus h is the scaled Fermi length, b the scaled Fermi
energy and c�1 the scaled Bohr radius.



650 V. Bonnaillie-Noël et al. / Journal of Computational Physics 219 (2006) 644–670
3.5. Current

Although the current density J is a final quantity which will always be presented in its physical units, the
rescaled density current J satisfies
1 Sim
J ¼
Z þ1

0

gðk2ÞIm

Z 1

0

dwh
�ðk; xÞ
dx

wh
�ðk; xÞ dx

� �
dk

2ph
; ð13Þ
while the scaling is J ¼ e
ffiffiffiffiffiffiffiffi
m1m2
p

m
EF

p�hL2 J .

4. Theoretical results

This section gives a short account of the theoretical results which were obtained in [32] about the limit
h! 0 for the scaled system (11). After this presentation, it will be shown how the simple asymptotic model
can be extended in order to include physically relevant situations.

4.1. Linear case

Consider first a quantum Hamiltonian Hh ¼ �h2d2=dx2 þVh where the potential Vh is defined according
to (11) with the nonlinear potential V h

NL replaced by a non-negative potential Vh(x). Another change in the
theoretical analysis is about the beam profile g which is replaced by a compactly supported function ~g.

Assumption 1. The family (Vh)h2(0, 1) is assumed to be uniformly bounded in the space of Lipschitz functions
W1,1([0, 1]) with a limit V in the C0ð½0; 1�Þ topology.

Assumption 2. The function ~g (which replaces the function g in (11)) is a continuous function with a compact
support included in [K*,K*] � (0,V0 � B). Moreover, the potentials Wj are compactly supported and satisfy
�V0 6Wj 6 0.

Notations

� The potential ~V is the limiting filled (i.e. where the wells Wj have been removed) potential1
~VðxÞ ¼ BðxÞ þ V 01½0;1�ðxÞ þ V ðxÞ:
� For any j = 1, . . . ,N, the Schrödinger operator Hj :¼ �d2/dx2 + Wj(x), DðHjÞ ¼ H 2ðRÞ � L2ðRÞ, admits a
finite number of negative eigenvalues ð�ek

j Þ16k6Kj<þ1 labelled according to the increasing order. The set
of energies Ej is defined by
Ej ¼ ~VðcjÞ � ek
j ; 1 6 k 6 Kj

n o
: ð14Þ
� The quantities ek
j , 1 6 k 6 Kj, 1 6 j 6 N are called the resonant depths.

� The set of resonant energies is defined as
E ¼
[N
j¼1

Ej ¼ ~VðcjÞ � ek
j ; 1 6 k 6 Kj; 1 6 j 6 N

n o
: ð15Þ
� For any E 2 R, we set
J E :¼ fj 2 f1; . . . ;Ng s:t: E 2 Ejg:

We say that the well cj is resonant at the energy E when j 2 JE.
� Finally, we set
ilarly, for h > 0, we use the notation ~VhðxÞ ¼ BðxÞ þ V 01½0;1�ðxÞ þ V hðxÞ.
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cE
‘ :¼ min

j2JE
cj; cE

r :¼ max
j2JE

cj;
and simply
cE when cE
‘ ¼ cE

r :
Definition 3. For U 2 L1ð½0; 1�; RÞ, the Agmon distance is the degenerate distance given by
dAgðx; y; UÞ ¼
Z y

x

ffiffiffiffiffiffiffiffiffiffiffiffi
UþðtÞ

p
dt

����
����;
with U+(t) = max{U(t), 0}.
For a resonant energy E 2 E, we set
dE
‘ :¼ dAgðcE

r ; 1; ~V� EÞ � dAgð0; cE
r ; ~V� EÞ;

dE
r :¼ dAgð0; cE

‘ ; ~V� EÞ � dAgðcE
‘ ; 1; ~V� EÞ:
Remark 4. The Agmon distance is a standard tool in the analysis of WKB methods (see for example [18]) and
solves locally an Hamilton–Jacobi equation. It is usually referred to in the physics literature as the action.

With this definition, dE
‘ > 0 if and only if all the resonant wells at the energy E are in the left-hand side of

the island (i.e. closer to x = 0 than x = 1). Conversely, dE
r > 0 if and only if all the resonant wells at the energy

E are in the right-hand side of the island (i.e. closer to x = 1 than x = 0). Actually, for x,y 2 [0, 1], the distance
with the asymptotic potential has to be thought as the limit
dAgðx; y; ~V� EÞ ¼ lim
h!0

dAgðx; y; ~Vh � EÞ ¼ lim
h!0

dAgðx; y;Vh � EÞ:
Instead of writing explicitly a theorem which would require additional technical (and sometimes artificial)
mathematical assumptions, we simplify here the presentation of the results obtained in [31,32]. We refer the
reader to those references for more precise statements.

Result 1: The electronic density defined by
nhðxÞ ¼
Z þ1

0

~gðk2Þ wh
�ðk; xÞ

�� ��2 dk
2ph
defines a non-negative measure in [0, 1] which admits weak* limit points in the set Mbð½0; 1�Þ of bounded Ra-
don measures on [0,1] as h! 0. With Assumptions 1 and 2, those limit points take the form in ]0, 1[
lj�0;1½ðxÞ ¼
X
E2E

X
j2JE

tE
j ~gðEÞdcjðxÞ;
where dcj denotes the Dirac d-function and the coefficients tE
j satisfy2
tE
j 2 ½0; 1� and

dE
‘ > 0) tE

j ¼ 1 8j 2 J E;

dE
r > 0) tE

j ¼ 0 8j 2 J E:

(
ð16Þ
Generic case: The non degenerate case is when #JE = 1 with dE
‘ > 0 or dE

r > 0 for all E 2 E \ supp~g. Then
the sequence nhj�0;1½ admits a unique limit point:
nhj�0;1½ðxÞ +
h!0

X
E2E

1dE
‘ >0ðEÞ~gðEÞdcEðxÞ:
Critical case 1: Already with one resonant state, E \ supp~g ¼ fE0g with #J E0 ¼ 1, a non generic case may
appear. It corresponds to the case dE0

‘ ¼ dE0
r ¼ 0:
e corresponding results in [31] are written with a sign mistake.
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dAgð0; cE0 ; ~V� E0Þ ¼ dAgðcE0 ; 1; ~V� E0Þ: ð17Þ

It was shown that this asymptotic information on the Agmon distances (it is written in terms of the asymptotic
potential ~V) does not prevent any value tE0

1 2 ½0; 1�. Note that the indeterminacy of tE0
1 is replaced by the con-

straint (17).
Critical case 2: Another interesting case which is considered by our numerical calculations is about the

case #J E0 ¼ 2 (for the sake of simplicity we assume here again E \ supp~g ¼ fE0g). First, since E0 is a lim-
iting resonant energy (i.e. the limit as h! 0 of the real part of a resonance), all the cases when E0 is the
common limit of two distinct h-dependent resonant energies have to be considered. In particular, the gen-
eric case and any relevant combination of the critical case 1 can still occur. Once this is done, another
case is possible when dE

‘ 6 0 and dE
r 6 0. The possible values of tE0

1 and tE0
2 can be restricted to the next

three cases:
tE0
1 ¼ 1; tE0

2 2 ½0; 1�; when dAgð0; cE0
‘ ; ~V� E0Þ < dAgðcE0

r ; 1; ~V� E0Þ; ð18Þ
tE0
1 2 ½0; 1�; tE0

2 ¼ 0; when dAgð0; cE0
‘ ; ~V� E0Þ > dAgðcE0

r ; 1; ~V� E0Þ; ð19Þ
0 6 tE0

2 6 tE0
1 6 1; when dAgð0; cE0

‘ ; ~V� E0Þ ¼ dAgðcE0
r ; 1; ~V� E0Þ: ð20Þ
Such a result can be obtained by considering all the possible asymptotic behaviour of the explicit h-dependent
quantities computed in [32, pp. 250–256]. Cases where more than two resonant energies can meet (i.e. when
#JE > 2) will not be considered and the above enumeration will be taken for granted in our asymptotic model.
4.2. Nonlinear asymptotics

Here are the mathematical results which were rigorously proved in [32,33] with Assumptions 1 and 2.
We introduce the functional spaces BV2([0,1]) of continuous functions whose second derivative is a

bounded measure on [0,1] and its subspace
BV 2
0ð½0; 1�Þþ ¼ fV 2 BV 2ð½0; 1�Þ s:t: V P 0; V ð0Þ ¼ V ð1Þ ¼ 0g:
Note the embedding BV 2
0ð½0; 1�Þþ � BV 2ð½0; 1�Þ � C0;að½0; 1�Þ where the last one is compact for any a 2 (0, 1).

By setting c0 = 0 and cN+1 = 1, we introduce the set of piecewise affine functions:
P1
0ðcÞþ :¼ V 2 P1ðcÞ; V P 0

� 	
;

with P1ðcÞ the usual set of continuous P1 finite elements associated with the nodes c = {c0,c1, . . . ,cN+1}, c0 = 0,
cN+1 = 1.

Theorem 5. Under Assumptions 1 and 2 (with g replaced by ~g in (11)), the solutions V h
NL, h 2 (0,1], of the system

(11)
� d2V h
NL

dx2
¼ cn;

V h
NLð0Þ ¼ V h

NLð1Þ ¼ 0
describe a bounded set of BV 2
0ð½0; 1�Þþ. The set A of its limit points as h! 0 is a subset of P1

0ðcÞþ. Moreover, any

V 2A solves
� d2V
dx2
¼ c

X
E2E\½K�;K��

X
j2JE

tE
j ~gðEÞdcj ; V ð0Þ ¼ V ð1Þ ¼ 0; ð21Þ
where the coefficients tE
j satisfy
tE
j 2 ½0; 1� and

dE
‘ > 0) tE

j ¼ 1 8j 2 J E;

dE
r > 0) tE

j ¼ 0 8j 2 J E:

(
ð22Þ
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Let C be the set
C :¼ fV 2 P1
0ðcÞþ s:t: 8E 2 E \ ½K�;K��; ðdE

‘ > 0 or dE
r > 0Þg:
The possible limits lying in C can be given by a variational formulation using
GðEÞ ¼ �
Z þ1

E
~gðkÞ dk:
Corollary 6. The set A \ C is given by the collection of critical points in P1
0ðcÞþ for the functionals
JKðV Þ ¼
1

2

Z 1

0

dV ðxÞ
dx

����
����
2

dx�
X
E2K

GðEÞ; ð23Þ
which satisfy the compatibility condition
K ¼ E 2 E \ ½K�;K�� s:t: dE
‘ > 0

� 	
:

The previous result covers in a slightly wider generality what we called the ‘‘generic case’’ in the previous sub-
section. It does not say anything about A n C. Actually, Theorem 5 can be combined with the discussion of Sec-
tion 4.1 in order to get a full description, possibly too wide, of A. The important conclusion stemming from
Theorem 5 is that it reduces an infinite dimensional nonlinear system which couples in a non-trivial way spectral
quantities with an elliptic PDE, to a collection of simple finite dimensional nonlinear systems. Moreover, a full
description of this collection of nonlinear systems involves the comparison of some Agmon distances.

Before going further in this direction, we first present how the theoretical results have to be interpreted and
adapted in order to fit with the more realistic model.

4.3. Realistic injection profile

Assumption 2 about the compact support of ~g is a technical assumption which simplifies at different points
the mathematical analysis. Of course it is not satisfied by the Fermi–Dirac distribution function g in (11). The
two extremal values +1 and 0 are analyzed on different bases.

First the Fermi–Dirac distribution function decays exponentially fast with respect to the energy like any
thermodynamical equilibrium distribution function. Truncating at high energy is physically relevant and nec-
essary for a numerical treatment. The assumption that the compact support of g is included in
[0,K*] � [0, V0 � B) can be extended to [0,K*] � [0,V0). It will be relevant for realistic physical data provided
that the temperature T and the donor density nD are not too high (with our dimensionless parameter V0 > 1
and b large enough).

The treatment of the energy 0 has to be done with more care. Actually, it is known that the crossing of the
energy 0 by the resonant energies explains the negative differential resistance or the hysteresis phenomenon. A
complete rigorous mathematical approach can be performed by starting from Theorem 5 as follows:

(0) Replace the function g in (11) by a function compactly supported in [0,K*] � [0, V0).
(1) Take a function v 2 C1ð0;þ1Þ such that v ” 1 on [1,+1) and v ” 0 for [0,1/2].
(2) Set for e > 0, ~geðxÞ ¼ vðxeÞgðxÞ.
(3) Denote by Ve;h

NL the possible solutions of the system (11) with g replaced by ~ge.
(4) Consider the two steps asymptotics as e! 0 after h! 0.

According to Theorem 5 and for any e > 0, the limit points of V e;h
NL describe a bounded set Ae of piecewise

affine potentials which solve (21) with ~g replaced by ~ge. The possible limits as e! 0 belong to the set A of
solutions to
� d2V
dx2
¼ c

X
E2E\½0;K��

X
j2JE

tE
j gðEÞdcj ; V ð0Þ ¼ V ð1Þ ¼ 0; ð24Þ
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where g(0) 2 [0,g(0+)] is arbitrary, and where the coefficients tE
j satisfy
tE
j 2 ½0; 1� and

dE
‘ > 0) tE

j ¼ 1 8j 2 J E;

dE
r > 0) tE

j ¼ 0 8j 2 J E:

(
ð25Þ
In connection with the variational formulation of Corollary 6, an interesting property related in some sense to
the thermodynamical stability is due to the fact that g is a decaying function. Set
_C :¼ V 2 P1
0ðcÞþ s:t: 0 62 E and 8E 2 E \ ð0;K��; ðdE

‘ > 0 or dE
r > 0Þ

� 	
;

and
GðEÞ ¼ �
Z K�

E
gðkÞ dk; for E 2 ½0;K��:
Proposition 7. The set A \ _C is given by the collection of critical points in P1
0ðcÞþ for the functionals of the form

(23) which satisfy the compatibility condition
K ¼ E 2 E \ ð0;K�� s:t: dE
‘ > 0

� 	
; 0 62 E:
When g is decreasing on (0,K*), the functional JK is strictly convex for any fixed K and there exists at most one

critical point.

Hence for generic cases which avoid 0 2 E, the problem is reduced to a finite collection of well-posed var-
iational nonlinear problems in finite dimension.

4.4. Injection from the two sides

For the sake of simplicity but also for a pedagogical purpose, the mathematical analysis as well as the above
presentation were done in the case where the function of the momentum g(k) is supported in {k P 0}. This
presentation makes more clear the spectral anisotropy when functions of the momentum are considered
instead of functions of the energy. However in realistic diodes, electrons are injected from both sides with dif-
ferent electro-chemical potentials (see Fig. 2). Actually, this two-sided injection of electrons is easily taken into
account in the modelling or in the mathematical analysis as follows.

Let us denote by g+ and g� the (truncated) Fermi–Dirac function for the injection profiles from the left and
from the right, respectively. When the donor density are equal in the source and in the drain, taking into
account the height of the bias B provides
gþðEÞ ¼ g0ðEÞ and g�ðEÞ ¼ g0ðE þ BÞ:

Since the momentum function has the form
gðkÞ ¼ gþðk2Þ1fk>0g þ g�ðk2 � BÞ1fk<0g;
we can write
gðkÞ ¼ ðgþðk2Þ � g�ðk2ÞÞ1fk>0g þ ðg�ðk2 � BÞ1fk<0g þ g�ðk2Þ1fk>0gÞ:
Fig. 2. Injection from the two sides.
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Using the decomposition of the incoming beam in a part coming from the left-hand side and one other coming
from the right-hand side, the operator form of this identity becomes
gþðH hÞ1fKh>0g þ g�ðHhÞ1fKh<0g ¼ ðgþðHhÞ � g�ðH hÞÞ1fKh>0g þ g�ðHhÞ: ð26Þ
The first part of the right-hand side of (26) is a function of the momentum supported in k > 0 and the second is
a function of the energy.

Hence Theorem 5 and its variation of Section 4.3 can be adapted by replacing g(E) by g+(E) � g�(E) in (24)
while adding a term g�(E) without any coefficient tE

j .
The set A of possible limit points of solutions to (11) with a two-sided injection is the set of non-negative

piecewise affine potentials which solve
� d2V
dx2
¼ c

X
E2E

X
j2JE

tE
j ðgþðEÞ � g�ðEÞÞ1f½0;K��gðEÞ þ g�ðEÞ1½0;K��ðEÞ

� �
dcj ;

V ð0Þ ¼ V ð1Þ ¼ 0;

ð27Þ
with the convention that (g+ � g�)(0) can be any value in [0, (g+ � g�)(0+)] and where the coefficients tE
j satisfy

the property (25).
Moreover, the variational formulation of Proposition 7 can be adapted with a similar uniqueness result

when g0 is a decreasing function.

4.5. Conclusion about the theoretical analysis

The theoretical results show that, asymptotically as h! 0, the full system (11) reduces to a collection of
well-posed simple nonlinear equations. The well-posedness is confirmed by the uniqueness result of Proposi-
tion 7 for some generic case. Another important point which appeared in the discussion of Section 4.1 is that,
in all the degenerate cases which were considered, any new indeterminacy of the coefficients tE

j is compensated
by a new equation. Similarly, the indeterminacy of g(0) in (24) (resp. of (g+ � g�)(0) in (27)) is compensated by
the equation E = 0.

Moreover, this mathematical analysis shows what are the important quantities in this nonlinear problem.
Asymptotically and for any fixed case (generic or critical case), the unknowns are reduced to the jumps of the
potential derivative dV/dx:

The set of unknowns is the finite set of total masses per well.

The important parameters are:

� The dimensionless small parameter h! 0: In practical situations, the parameter h is strictly positive but
reasonably small in order to exhibit resonances as very stiff spectral quantities. Remind that the asymptotic
analysis was carried out in a framework which keeps a finite number of resonant states in the physically
relevant energy interval. This fits very well with the cases which will be presented.
� The position of the well cj: In the mathematical analysis, the quantum wells are asymptotically pointwise

concentrated. Of course, this does not hold exactly for realistic h > 0. These positions will be computed
as averaged positions in the wells around which the electronic density concentrates.
� The bound state energies �ek

j of the Hamiltonian �D + Wj: After a translation by ~VðcjÞ, they are equal to
the real part of the resonances or to the Dirichlet eigenvalues up to some very small error (this will be
checked numerically). Those energies are parameters of the asymptotic nonlinear problem. They will be
computed numerically in a linear setting before being plugged into the computation of the nonlinear solu-
tions. Actually, as we will see in Section 6.1, the parameters �ek

j and cj will be determined similarly by the
same process.
� The Agmon distances: Although they are unknowns before solving the nonlinear problem, they can be

viewed as parameters in the sense that the comparison of Agmon distances parametrizes all the possible
cases. Actually, all the possible cases are considered in a first numerical approach and the constraints on
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the Agmon distances are checked afterwards in order to eliminate the irrelevant cases. Note also that the
fact that for h > 0, the wells are not pointwise concentrated has to be taken into account in the computation
of the actual Agmon distances. The details are explained in Section 7.

5. Validity of the asymptotic model

Here it is checked on some numerical examples that the asymptotics h! 0 makes sense in the simulation of
realistic devices. Some examples of electronic densities, numerically computed with a large number of general-
ized eigenfunctions, exhibit an anisotropy phenomenon which confirms the rapid variation of the asymptotic
parameter tE

j from 1 to 0 in (24). All those numerical observations are presented in order to show that the
asymptotic model derived as the dimensionless parameter h goes to 0 makes sense in the study of realistic
devices.

5.1. Generalized eigenfunctions

In one dimension and with the potential Vh which is constant outside [0, 1], the generalized eigenfunctions
are fully determined by a k-dependent non-homogeneous boundary problem on [0, 1].

Let us first consider the case k > 0. The incoming generalized eigenfunction is then characterized by
wh
�ðkÞ:
� h2 d2

dx2
wh
�ðk; xÞ þVhwh

�ðk; xÞ ¼ k2wh
�ðk; xÞ;

hwh
�
0ðk; 0Þ þ ikwh

�ðk; 0Þ ¼ 2ik; k > 0;

hwh
�
0ðk; 1Þ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ B

p
wh
�ðk; 1Þ ¼ 0:

ð28Þ
In the case k < 0, k2 6¼ B, with the convention ðk2 � BÞ1=2 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B� k2
p

when B > k2 (more generally
ðqeihÞ1=2 ¼ ffiffiffi

q
p

eih=2 for q > 0 and h 2 [0,2p)), the generalized eigenfunction wh
�ðkÞ is given by
� h2 d2

dx2
wh
�ðk; xÞ þVhwh

�ðk; xÞ ¼ ðk2 � BÞwh
�ðk; xÞ;

hwh
�
0ðk; 0Þ þ iðk2 � BÞ1=2wh

�ðk; 0Þ ¼ 0; k < 0;

hwh
�
0ðk; 1Þ þ ikwh

�ðk; 1Þ ¼ 2ikeik=h:

ð29Þ
Numerically, those boundary value problems are simply computed by a finite difference method. The discret-
ization step Dx = 1/Nx is a parameter of the numerical method. The computation of integrated quantities with
respect to k also requires a discretization in the k variable. The step Dk has to be chosen small enough in order
to catch the resonances which produce very stiff spectral quantities when h > 0 is small. Actually, it is known
(see for example [19,20,38]) that this slope is of order eC/h. The stiffness of this spectral quantities is a first test
to check that the asymptotic model for h! 0 is relevant. One may question about the numerical complexity
related to the choice of a very small Dk = K*/Nk. Actually, such calculations are done only once in the begin-
ning in order to guess the parameters �ek

j (and cj, see Section 6.1) and in the end in the computation of the
current density (see Section 6.2). Once those parameters are fixed, solving the asymptotic nonlinear problem
(24) does not involve anymore the generalized eigenfunctions. Hence the numerical complexity of the accurate
computations of the generalized eigenfunction is not a big issue here. For the alternative efficient numerical
methods related to such problems and which deal with the generalized eigenfunctions on the ground of a
WKB analysis, we refer to the works of Ben Abdallah and Pinaud [7,34,35].

5.2. Detection of resonances

After computing the generalized eigenfunctions by a finite difference method, we compute the local density
of states with respect to the energy in each well. The stiff peaks of this density of states are identified as
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resonances according to the Breit–Wigner formula (see [15,32,38]). Note that for h > 0, the wells are not
reduced to single points. We define for each well around cj, the function
-1

0

1

2

3

4

5

6

7

8

9

W
ei

gh
t

MjðEÞ ¼
Z

c�j ;c
þ
j½ �
jwh
�ð

ffiffiffiffi
E
p

; xÞj2 þ jwh
�ð�

ffiffiffiffiffiffiffiffiffiffiffiffi
E þ B
p

; xÞj2
� �

dx:
The neighbourhood ½c�j ; cþj � of the center of the well cj is specified further in Section 7.
Fig. 3 shows the function M1(E) in a fixed well for two values B = 0 = Bmin and B = Bmax of the bias. It

corresponds to the physically realistic case with one well presented in Section 9.2, case 1. We simply show
the results in terms of dimensionless quantities. The errorbar on the energy axis represents the detected reso-
nances and the Dirichlet eigenvalues (with boundary conditions w(0) = w(1) = 0 instead of transparent bound-
ary conditions in (29)). The very stiff picks as well as the proximity of the detected resonances with the
Dirichlet eigenvalues confirm the validity of an asymptotic treatment as h! 0.

5.3. Filled and empty wells for functions of the momentum

On the ground of numerical examples, we now show that the asymptotic behaviour described in (22) makes
sense even when h > 0 is not very small and lies in the range of parameters occurring in realistic configurations.
We simply consider here two asymmetric barrier profiles which are related to the examples of Section 9.2.

The bias is 0 as well as the nonlinear potential. Instead of changing the potential, we consider the two injec-
tion profiles
injection from the left : gðkÞ ¼ ð1� k2Þþ1½0;þ1ÞðkÞ;
injection from the right : gðkÞ ¼ ð1� k2Þþ1ð�1;0�ðkÞ:
Let us first analyze the device described in Fig. 4. For this device with one well, we have h = 0.17. The size of
the barriers are, respectively, 0.5 and 0.8 nm and the width of the well is 4 nm. With electrons coming from the
left-hand side, then the well c is filled. This illustrates the case t1 = 1 in (22). With electrons coming from the
right-hand side, then the well c is not filled. This illustrates the case t1 = 0 in (22). Note that h = 0.17 is not
very small and that the width of the barriers does not show a big asymmetry. This example is investigated
in Section 9.2, case 1. Here, the size of the barriers and the wells have been changed a little in order to empha-
size the Agmon distance effects.

Actually, in examples associated with GaAs devices, the transition from t1 = 1 to t1 = 0 is even more sen-
sitive to the variation of the widths of the barriers.

Fig. 5 shows a device with two wells. The widths of barriers are, respectively, 0.5, 0.5 and 0.6 nm and the
widths of the wells are 1.5 and 1 nm. In this device, we have h = 0.13 and there is one resonant state per well,
with resonant energies E ¼ fE1;E2g. The corresponding Agmon distances satisfy
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Fig. 3. Determination of resonant energies.
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dAgð0; c1;V� E1Þ < dAgðc1; 1;V� E1Þ and dAgð0; c2;V� E2Þ > dAgðc2; 1;V� E2Þ:

If the electrons come only from the left, then (22) gives t1 = 1 and t2 = 0, in agreement with the numerical
results. On the other hand, with injection from the right, no well is filled since the resonant energy E2 in
the second well is too high.

We will come back to this example in Section 9.2, case 4.

5.4. Piecewise affine potential

Restricting the nonlinear potential to the class of piecewise affine potential is the key point which permits to
reduce the complexity of the full nonlinear system (11), in the limit h! 0. It is a consequence of the scaling of
the wells W jðx�cj

h Þ as quantum wells in a semiclassical island, for which the classically permitted region is
asymptotically reduced to a single point. Nevertheless in practical cases, h is not 0 although reasonably small
(according to the discussion of Section 5.2), and the wells have the same order of magnitude as the barriers.
Hopefully, the nonlinearity is not very strong because the size of a well has the same order of magnitude of the
Bohr radius aB: the effective nonlinearity in the jth well is of order cj ¼

4Lj

aB
after adapting the scaling (12) to a
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Fig. 6. Approximation of the nonlinear potential.
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single well. Therefore, the difference between the true nonlinear potential and its piecewise affine approxima-
tion can be neglected when the position cj is chosen close to the center of mass of the electronic density in the
jth well according to Fig. 6.

The exactly used value of the position cj is presented in Section 6.1.

6. Implementation of the asymptotic model

Here we show how the asymptotic model derived after taking the limit h! 0 in Section 4 is adapted to
physically relevant geometries for a finite value h > 0 of the parameter.

6.1. Position of the wells cj and resonant depths ek
j

Here we explain how the parameters cj and ek
j , k = 1, . . . ,Kj are determined in realistic cases with h > 0. With

those parameters, the kth resonant energy level attached to the jth well is given in the asymptotic model by
Ek
j ¼ ~VðcjÞ � ek

j ; ð30Þ
according to (14) and (15). Actually, we restrict firstly our attention to the case Kj = 1 and write simply ej in-
stead of e1

j . Fortunately, the process that we describe in this simpler case admits a natural and easily imple-
mentable extension to Kj > 1 by accepting several values ck

j of the center of mass of the well. Details are
given about this in the end of this paragraph and in Section 7.

The determination of cj and ej is done simultaneously without requiring additional heavy numerical com-
putation. It is a linear interpolation process which relies on the following heuristic argument.

An intermediate step to show that the resonant energy in the jth well is close to ~VðcjÞ � ej relies on the fact
that it is at a distance Oðe�c=hÞ from some eigenvalue of (28), with the energy-dependent absorbing boundary
conditions replaced by homogeneous Dirichlet boundary conditions. Hence one can work with those Dirichlet
eigenvalues, the eigenfunctions of which are localized in the quantum wells. Those Dirichlet eigenvalues admit
a first order perturbation according to the Feynmann–Hellman law
dE ¼ hwjdV wi;

when w is a normalized eigenfunction at energy E, dV is the variation of the Hamiltonian and dE the corre-
sponding variation of the eigenvalue. Moreover when dV = dV(mx), with m > 0 small, varies on a slower scale
than w, a second order Taylor expansion of dV(c + m(x � c)) leads to
hwjdV wi ¼
Z 1

0

dV ðmxÞjwðxÞj2 dx ¼ dV ðcÞ þ Oðm2Þ;
where c is the center of mass of the probability density jwj2:
Z 1

0

ðx� cÞjwðxÞj2 dx ¼ 0:
The resonant energies associated with each well can be determined according to the process described in Sec-
tion 5.2. These computations are done for the two extremal values of the applied bias, Bmin and Bmax, and with
no nonlinear potential ðV h

NL 	 0Þ. This provides in the well j the two resonant energies Ej(Bmin) and Ej(Bmax).
The variation of the potential by changing the bias is the affine function dV(x) = �(Bmax � Bmin)x for
x 2 [0,1]. The previous discussion says that the center of mass cj can be approximated according to
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EjðBmaxÞ � EjðBminÞ ¼ �ðBmax � BminÞcj: ð31Þ

Finally, the approximation Ej � ~VðcjÞ � ej provides the value ej by using
EjðBÞ ¼ V 0 � Bcj � ej; ð32Þ

applied with B = Bmax or B = Bmin (both are compatible according to (31)).

Fig. 7 summarizes how the parameters (cj,ej) (occurring in the asymptotic model h! 0) are fitted to the
numerical values of resonant energies (h > 0).

Fig. 8 shows in a practical case the actual density and the position cj of the simplifying d-function.
We end this paragraph with two remarks.

Remark 8

(1) The case of Fig. 8 seems at a first glance to be far from the situation of (narrow) quantum wells in a
semiclassical island (wide barriers). Actually, the barriers can be considered as wide enough when they
lead to a stiff localization of the resonant energies (see Section 5.2). On the other hand, replacing the real
electronic density by a d-function will not introduce a big error when the width of the well is less than the
Bohr radius aB.

(2) We focused on the case when there is one single resonant state per well. A simple way to introduce sev-
eral resonant energies Ek

j per well, 1 6 k 6 Kj, can be done by determining several averaged positions
according to (31), ck

j , 1 6 k 6 Kj. This can also be interpreted as Kj wells separated by barriers with van-
ishing widths (see Fig. 10).
Fig. 7. Determination of the resonant depth ej and of the averaged position cj of the jth well.
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6.2. Current density

Another drawback of the asymptotic model obtained as h! 0 is that the current density J defined in Sec-
tion 3.5 vanishes as h! 0. In the current–voltage characteristic curves which are presented here, the current
density is computed for h > 0 with the help of the generalized eigenfunctions, once the nonlinear potential is
computed with the asymptotic model. Hence the computation of the generalized eigenfunction which presents
the highest complexity is done first to determine the parameters (cj,ej) of the asymptotic nonlinear problem
and in the end in order to compute the current density.
7. Computation of Agmon distances for a piecewise affine potential

After Section 5.4, the nonlinear potential V h
NL can be replaced by the piecewise affine asymptotic potential V

of Theorem 5. Then the Agmon distances, which are involved in the definition of the different cases, admit an
explicit algebraic expression which is specified here. Since small variations of the Agmon distances have a
strong effect on the nonlinear problem, it is better here to compute these quantities with the real size of the
wells and barriers. The left-hand side of Fig. 9 illustrates the asymptotics model with a total potential ~V,
which is piecewise affine, while the right-hand side presents a physically realistic case, with non-vanishing well
widths, for which the potential is denoted V ¼ ~Vþ W , with �V0 6W 6 0.

With the point ci, the left and right ends of the barrier before ci are denoted by c�i and cþi . For an energy
E P maxfVðxÞ; x 2 ½cþi ; c�iþ1�g, the Agmon distances satisfy the relationship:
dAgðc�i ; ci;V� EÞ ¼ dAgðc�i ; cþi ; ~V� EÞ;
and
dAgðci; cþiþ1;V� EÞ ¼ dAgðc�iþ1; c
þ
iþ1;

~V� EÞ:
According to (30) and by considering only the case Ki = 1 according to Remark 8, the resonant energy at-
tached to the well i equals:
Ei ¼ ~VðciÞ � ei:
In agreement with all our numerical experiments, the non-negative resonant energies are assumed to lie above
the bottom of the wells:
Ei P max VðxÞ; x 2 ½cþk ; c�kþ1�; 1 6 k 6 N
� 	

when Ei P 0:
Then, the Agmon distances which are involved in the weight ti, attached to the non-negative resonant energy
Ei P 0, are given by
d�;i ¼ dAgð0; ci;V� EiÞ ¼
Xi

k¼1

dAgðck�1; ck;V� EiÞ ¼
Xi

k¼1

dAgðc�k ; cþk ; ~V� EiÞ; ð33Þ
and
Fig. 9. Determination of the points characterizing a well.
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dþ;i ¼ dAgðci; 1;V� EiÞ ¼
XNþ1

k¼iþ1

dAgðck�1; ck;V� EiÞ ¼
XNþ1

k¼iþ1

dAgðc�k ; cþk ; ~V� EiÞ; ð34Þ
with c0 = 0 and cN+1 = 1. It remains to compute each term, dAgðc�k ; cþk ; ~V� EiÞ. It is convenient to introduce
the quantity
y
k;i ¼
~Vðc
k Þ � ~VðciÞ

ei
;

which permits to simplify the expression of dAgðc�k ; cþk ; ~V� EiÞ and to write
y
k;i P �1() Ei ¼ ~VðciÞ � ei 6
~Vðc
k Þ:
Considering several cases illustrated by Fig. 10, the Agmon distance can be rewritten as
di;� ¼
2

3

ffiffiffiffi
ei
p Xi

k¼1

ðcþk � c�k Þfðyþk ; y�k Þ; ð35Þ

dþ;i ¼
2

3

ffiffiffiffi
ei
p XNþ1

k¼iþ1

ðcþk � c�k Þfðyþk ; y�k Þ; ð36Þ
where the symmetric function f is given by
fðy1; y2Þ ¼

ðy1þ1Þ3=2�ðy2þ1Þ3=2

y1�y2
if y1 P �1; y2 P �1 and y1 6¼ y2;

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 þ 1

p
if y1 P �1; y2 P �1 and y1 ¼ y2 þ oð1Þ;

� ðy2þ1Þ3=2

y1�y2
if y1 6 �1 and y2 P �1;

ðy1þ1Þ3=2

y1�y2
if y1 P �1 and y2 6 �1;

0 else:

8>>>>>>>>><
>>>>>>>>>:
The Newton algorithm used in solving numerically the nonlinear problem also requires the expressions of the
derivatives of (35) and (36). By setting V j ¼ ~VðcjÞ, the definition of y
k;i leads to
odi;�

oV j
¼ 2

3

Xi

k¼1

ðck � ck�1Þðrþk � r�k Þffiffiffiffi
ei
p � ð1� rþk Þo1fðyþk ; y�k Þ þ ð1� r�k Þo1fðy�k ; yþk Þ


 �
dk;jþ1

�
þ rþk o1fðyþk ; y�k Þ þ r�k o1fðy�k ; yþk Þ

 �

dk;j � o1fðyþk ; y�k Þ þ o1fðy�k ; yþk Þ

 �

di;j


;

with r
k ¼
c
k �ck�1

ck�ck�1
, for any i, j 2 {1, . . . ,N}. The derivative o1f equals
Fig. 10. Notation for a device.
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o1fðy1; y2Þ ¼

3
2ðy1þ1Þ1=2ðy1�y2Þ�ðy1þ1Þ3=2þðy2þ1Þ3=2

ðy1�y2Þ2
if y1 P �1; y2 P �1 and y1 6¼ y2;

3
8

1ffiffiffiffiffiffiffi
y1þ1
p if y1 P �1; y2 P �1 and y1 ¼ y2 þ oð1Þ;

ðy2þ1Þ3=2

ðy1�y2Þ2
if y1 6 �1 and y2 P �1;

3
2ðy1þ1Þ1=2ðy1�y2Þ�ðy1þ1Þ3=2

ðy1�y2Þ2
if y1 P �1 and y2 6 �1;

0 else:

8>>>>>>>>>><
>>>>>>>>>>:
The derivative od+,i/oVj is obtained by summing over k 2 {i + 1, . . . ,N + 1}.

8. Penalization method

The constraints which involve the Agmon distance in Theorem 5 have no obvious convexity properties. The
simplest and robust way to take them into account is a penalization method. Using notations (22), we set
tj = sjhj with
hj ¼
1

1þ exp
dAgð0;cj;V�EjÞ�dAgðcj;1;V�EjÞ

e

;

and for any resonances, we distinguish three cases:
Ej ¼ ~VðcjÞ � ej > 0; sj ¼ 1;

Ej ¼ ~VðcjÞ � ej < 0; sj ¼ 0;

Ej ¼ ~VðcjÞ � ej ¼ 0; sj 2 ð0; 1Þ:
The penalization parameter e > 0 has to be small enough in order to have a realistic treatment of the constraint
but not too small in order to keep a well-behaved Newton algorithm. In the original problem, the Agmon dis-

tances occur in factors which behave like e
dAgð0;cj ;V�EjÞ�dAgðcj ;1;V�EjÞ

h . Therefore, values between e = 0 and e = h make
sense. The two extremal cases e = 0 and e = h have been tested. The possibility to take e ¼ OðhÞ implements a
soft transition between hj = 0 and hj = 1 as it may occur when h is not very small.

The algorithm relies on a continuation for the 3N cases corresponding to the three possible values of sj and
the N wells. The critical case coming from the equality of the Agmon distance (only) in the case with two wells
is treated separately.

The conditions sj 2 [0,1], Ej > 0, Ej < 0 are verified a posteriori.

9. Numerical results

In this section, we show how our numerical approach is flexible and seems able to catch in a very efficient
way the main quantities involved in the nonlinear problem. These computations were realized on a laptop with
a Gnu Octave program (similar to MATLAB). The indicated ‘‘CPU time’’ refers to the CPU time in seconds
used to solve the non linear problem without computing the current. The time used for this last part varies
from one case to the other and can be significantly longer. The core of the program which is the rapid one
permits to get very quickly an idea of the bifurcation diagram.

9.1. Computations for GaAs

We consider data of Pinaud proposed in [34,35]. Let us recall some physical parameters:
Relative mass
 0.067

Relative permittivity
 11.4

Temperature
 300 K

Donor density
 1018 cm�3
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Fermi level EF
Table 1
Data of the GaAs devices

Case 1

Size of the first barrier (nm) 5
Size of the second barrier (nm) 5
Size of the well (nm) 5
Penalization parameter e 0.001
] of voltage values B 100
] of momentum values k 1000
Position of the well (nm) c1 = 7.8
Resonance depth e1 (eV) 0.21
CPU time (s) 9.21

E1

V0

Bias

c−
1 c+

1 c1 c−
2 c+

2

Fig. 11. Device of the case 1.
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Fig. 12. Case 1. Negative differential resistance.
0.054 eV

h
 0.22

Bmin
 0 eV

Bmax
 0.25 eV

Height of barriers V0
 0.3 eV
We consider two devices with one well, the first with two barriers at equal size and the second with a barrier
wider than the other. Data are given in Table 1 and illustrated in Fig. 11 for the case 1.

The results of the computations in case 1 and in case 2 are given in Figs. 12 and 13.
In case 1, we notice that there is no hysteresis phenomenon. The approximation of the current needs a fine

discretization in energy. Those results are close to those of Pinaud [34]: For the same configuration, we obtain
a similar magnitude for the current and the negative differential resistance occurs at the same position as in
[34].
Case 2

3
6
6
0.01
100
200
c1 = 6.3
0.227
9.22

0.25

Current
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Fig. 13. Case 2. Hysteresis phenomenum.
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In case 2, we observe a hysteresis phenomenon. The hysteresis curve is not complete here. Actually, after
trying several configurations, obtaining a complete hysteresis phenomenon appeared rather difficult in GaAs–
AlGaAs heterostructures (the barriers are not high enough).

9.2. Computations for Si

We now consider five devices in Si–SiO whose common physical parameters are
Relative mass
 (0.19, 0.92, 0.19)

Relative permitivity
 11.9

Temperature
 300 K
Table 2 gives the geometry, physical and numerical parameters of the test cases.
The characteristics data of case 1 are taken from [26]. In this example where the two barriers have the same

size, several values of the penalization parameter were tested according to the discussion of Section 8 and led
here to interesting variations. Fig. 14 was obtained with a smaller parameter e = 0.01 while Fig. 15 shows the
results for e = h � 0.3. If the penalization parameter is small, e = 0.01, then no hysteresis phenomenon appears
as shown in Fig. 14 (CPU time is equal to 38.2). The resonant energies vary linearly and only the negative
differential resistance remains on the I–V curve of Fig. 14.

The second choice of the penalization parameter, e = h = 0.301933, shows in Fig. 15 a small double hyster-
esis phenomenon for biases in agreement with the ones obtained in [26] (the CPU time was 54.57).

Actually, the sensitivity to the penalization parameter is due to the fact that this case, with two equal bar-
riers, shows rather small differences between the right and left Agmon distances. Practically this would mean
that the hysteresis phenomenon (or its absence) is rather unstable with respect to small variations of the data.
As this is shown below, and confirmed by other numerical experiments in [31], the hysteresis phenomenon can
be strengthened when the second barrier is wider than the first one. On the contrary, it disappears as the width
of the second barrier becomes significantly smaller than the first one. The choice of a penalization parameter
close to h > 0 broadens this transition.

Looking at case 2 (see Fig. 16), the hysteresis appears more easily with the silicon heterostructures than
with the GaAs ones and it is more intensive, as it appears in Fig. 16. In comparison with the first silicon
device (case 1), the width of the second barrier and of the well have been increased. This makes the hysteresis
phenomena more stable and it is not sensitive to the variations of the penalization parameter like in of Sec-
tion 9.1, case 2.



Table 2
Data for the silicon devices

Case 1 Case 2 Case 3 Case 4 Case 5

Donor density, nD (cm�3) 1020 1020 1020 5 · 1020 5 · 1020

Fermi level, EF (eV) 0.245 0.245 0.245 0.716 0.716
Bmin (eV) 0 0 0 0 0
Bmax (eV) 4 3 2.5 2.5 3
Height of barrier, V0 (eV) 3 3 3 3 3
Number of wells 1 1 2 2 4
Size of the first barrier (nm) 0.5 0.5 0.5 0.5 0.5
Size of the second barrier (nm) 0.5 1 0.5 0.5 0.5
Size of the third barrier (nm) 1 0.6 0.5
Size of the fourth barrier (nm) 0.5
Size of the first well (nm) 2 2.5 1.5 1.5 1
Size of the second well (nm) 1 1 1
Size of the third well (nm) 0.5
Size of the fourth well (nm) 0.5
h 0.301933 0.22 0.2 0.13 0.13
Penalization parameter e 0.01/0.301933 0.01 0.01 0.01 0.096
] of voltage values B 100 100 100 100 100
] of momentum values k 200 200 200 200 400
Number of resonant energies 2 2 2 2 4
Position of the well c1 (nm) 1.46 1.7 1.2 1.2 1.1
Position of the well c2 (nm) 1.77 2.1 3 3 2.4
Position of the well c3 (nm) 3.9
Position of the well c4 (nm) 4.5
Position of the well c5 (nm) 5.5
Resonance depth e1 (eV) 1.8 2.2 2.5 2.5 2.09
Resonance depth e2 (eV) 2.7 2.8 2.7 2.1 2.24
Resonance depth e3 (eV) 1.1
Resonance depth e4 (eV) 1.68
CPU time (s) 38.2/54.57 45.5 42.45 84.99 528.63
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Fig. 14. Case 1. Small penalization parameter.
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In case 3 (see Fig. 17), the very high barrier potentials permit to create cases with a double well were the
two (asymptotic) resonant energies eventually take the same value. The second resonant energy decreases
faster than the first one. They reach the same value for the bias B � 1 eV and a new bifurcation branch
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Fig. 15. Case 1. Penalization parameter of size h.
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Fig. 16. Case 2. Hysteresis.
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seems to develop. This last point is even more obvious in the next case. Note that there is a small piece of
hysteresis phenomenon for a high applied voltage. It is coupled with an apparently strange behaviour of the
current density, for 1.7 eV 6 B 6 2 eV. Actually, it is an artefact of our approach: the nonlinear potential is
essentially determined via the asymptotic model while the current is computed with the full linear Schrö-
dinger system once the potential is known. The bias for which the resonant energy crosses the value 0 is
not exactly detected with the asymptotic model. This generates a substancial error on the current density
at this moment.

In case 4 (see Fig. 18), we now consider a case similar to case 3, with a donor density equal to 5 · 1020 cm�3.
With two wells and according to the discussion of [31–33] summarized in Section 4.1, some critical cases are
possible depending on the comparison of the two extremal Agmon distances. This is produced in the next
example in which the first and third barriers have almost the same size.

The last example (case 5) is a device with four wells. The bifurcation diagram, presented in Fig. 19, in which
only the generic cases were considered (no specific solution due to the crossing of resonant energies) demon-
strates a complex interaction between the different resonant levels.
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Fig. 17. Case 3. Crossing and Hysteresis.
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Fig. 18. Case 4. Critical solutions.
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10. Conclusion

The numerical experiments of Section 9 have shown on realistic cases that rather complex bifurcation dia-
grams can occur and are numerically accessible. This extends the previous works which were concerned with
the hysteresis phenomenon (see for example [21,37]). Our model permits to get very rapidly the shape of the
bifurcation diagram. It relies on rigorous mathematical results concerned with the asymptotic regime of quan-
tum wells in a semiclassical island, given in [32,33]. Although the asymptotic model required some modifica-
tions in order to fit with the parameters of realistic devices, the numerical results turn out to be close to the
ones of [26,34,35] based on a full treatment of the Schrödinger–Poisson system in the Landauer–Büttiker
approach.

Those calculations must not be considered as final ones. Firstly, as it is discussed after Fig. 17, the values of
the current density have to be interpreted with some care. Secondly, our model does not take into account the
nonlinear effect outside the quantum wells-barriers structure. Actually, the space-charge effects in those area
have been shown to be significant in some cases according to [27]. Finally, the asymptotic model on which
those calculations are based detects all the possible asymptotic solutions, without discriminating whether these
solutions really exist or not. For example and even without considering the stability question, it is not clear
that the detected critical solution of Fig. 18 really exists or is replaced by some nonlinear beating effect like
in [16,17].

Nevertheless these drawbacks are compensated by the rapidity of the method. This numerical approach can
first be used in order to get an insight of the influence of the data (geometry and height of the barriers, donor
density, temperature, applied bias, etc.) on the shape of the bifurcation diagram. Finally, when several non-
linear solutions are possible, a Newton algorithm for complete simulations of the Schrödinger–Poisson system
requires an initial guess. This approach provides it.
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670 V. Bonnaillie-Noël et al. / Journal of Computational Physics 219 (2006) 644–670
[2] A. Arnold, Mathematical concepts of open quantum boundary conditions, Transp. Theory Stat. Phys. 30 (4–6) (2001) 561–584.
[3] M. Baro, N. Ben Abdallah, P. Degond, A 1D coupled Schrödinger drift-diffusion model including collisions, J. Comput. Phys. 203

(2005) 129–153.
[4] M. Baro, H. Neidhardt, J. Rehberg, Current coupling of drift-diffusion models and Schrödinger–Poisson systems: dissipative hybrid

models, SIAM J. Math. Anal. 37 (3) (2005) 941–981.
[5] N. Ben Abdallah, On a multidimensional Schrödinger–Poisson scattering model for semiconductors, J. Math. Phys. 41 (7) (2000)

4241–4261.
[6] N. Ben Abdallah, P. Degond, P.A. Markowich, On a one-dimensional Schrödinger–Poisson scattering model, Z. Angew. Math. Phys.

48 (1) (1997) 135–155.
[7] N. Ben Abdallah, O. Pinaud, Multiscale simulation of transport in an open quantum system: resonances and WKB interpolation, J.

Comput. Phys. 213 (1) (2006) 288–310.
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